Multi-objective Robust Strategy Synthesis for Interval Markov Decision Processes
نویسندگان
چکیده
Interval Markov decision processes (IMDPs) generalise classical MDPs by having interval-valued transition probabilities. They provide a powerful modelling tool for probabilistic systems with an additional variation or uncertainty that prevents the knowledge of the exact transition probabilities. In this paper, we consider the problem of multi-objective robust strategy synthesis for interval MDPs, where the aim is to find a robust strategy that guarantees the satisfaction of multiple properties at the same time in face of the transition probability uncertainty. We first show that this problem is PSPACE-hard. Then, we provide a value iteration-based decision algorithm to approximate the Pareto set of achievable points. We finally demonstrate the practical effectiveness of our proposed approaches by applying them on several case studies using a prototypical tool.
منابع مشابه
A weighted metric method to optimize multi-response robust problems
In a robust parameter design (RPD) problem, the experimenter is interested to determine the values of con-trol factors such that responses will be robust or insensitive to variability of the noise factors. Response sur-face methodology (RSM) is one of the effective methods that can be employed for this purpose. Since quality of products or processes is usually evaluated through several quality ...
متن کاملA Multi Objective Fibonacci Search Based Algorithm for Resource Allocation in PERT Networks
The problem we investigate deals with the optimal assignment of resources to the activities of a stochastic project network. We seek to minimize the expected cost of the project include sum of resource utilization costs and lateness costs. We assume that the work content required by the activities follows an exponential distribution. The decision variables of the model are the allocated resourc...
متن کاملController Synthesis and Verification for Markov Decision Processes with Qualitative Branching Time Objectives
We show that the controller synthesis and verification problems for Markov decision processes with qualitative PECTL∗ objectives are 2-EXPTIME complete. More precisely, the algorithms are polynomial in the size of a given Markov decision process and doubly exponential in the size of a given qualitative PECTL∗ formula. Moreover, we show that if a given qualitative PECTL∗ objective is achievable ...
متن کاملUtilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs
Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...
متن کاملAutomated Verification and Strategy Synthesis for Probabilistic Systems
Probabilistic model checking is an automated technique to verify whether a probabilistic system, e.g., a distributed network protocol which can exhibit failures, satisfies a temporal logic property, for example, “the minimum probability of the network recovering from a fault in a given time period is above 0.98”. Dually, we can also synthesise, from a model and a property specification, a strat...
متن کامل